X-ray Circuits, Generators and Equipment

This unit will be an introduction into the x-ray circuitry and various types of x-ray equipment.

Diagnostic Radiographic Equipment

• All diagnostic x-ray equipment have three basic components:
 – the x-ray tube (discussed later)
 – the operation console
 – the high-voltage generator

Diagnostic Radiographic Equipment

• Comes in a variety of configurations to meet the specific needs of the technologist. Some different types of diagnostic x-ray machines are:
 – Tomography
 – Urology
 – Mammography
 – Portable
X-ray Tables

- Fixed (pedestal)
- Floating (movable in all directions)
- Tilting
- Some have attachments to help with exams:
 - Footboards
 - Handles
 - Shoulder supports
 - Side rails

X-ray Tube Supports

- A variety of configurations:
 - Wall-mounted
 - Floor-mounted
 - Floor-to-ceiling
 - Overhead suspension
 - Mobile x-ray tubes
 - C-arm x-ray tubes

The Control Panel

- Three primary controls:
 - kVp - quality
 - mA
 - Time (s)
 quantity
- Auxiliary controls
 (anatomical programs and AEC controls)
Main X-ray Circuit

• Two divisions to the main x-ray circuit:
 – Primary or control console section
 • Incoming current
 • Exposure switch
 • Autotransformer
 • Primary winding of the step-up transformer
 – Secondary or high voltage section
 • Secondary step-up transformer
 • Full-wave rectification circuits
 • Wiring leading to & from the x-ray tube

Filament X-ray Circuit

• mA Selector
 – is a Rheostat (variable resistor)
 – Adjusts resistance and is represented by the mA stations on the control panel
• Filament step-down transformer
 – Responsible for changing amps into milliamps.
Rectification

- Process of converting alternating current (AC) to direct current (DC)
- Required to ensure electron flow in one direction – from cathode to anode
 - Half-wave
 - Two rectifiers increase heat load capacity and protect the x-ray tube

Rectification

- Full-wave
- Four rectifiers create a routing system sending electrons through the x-ray tube the same way every time, in effect creating DC

Characteristics of Incoming Line Power

- Incoming line power may be 110 or 220 volts and 60 Hz in the U.S. and Canada.
- The usual voltage taken by the equipment is 210-220v.
- May need an additional transformer to stabilize incoming voltage
Characteristics of Incoming Line Current

- Phasing
 - Single-phase
 - Three-phase, six pulse
 - Three-phase, twelve pulse
- High Frequency

Single-Phase Power

- Allows the potential of the main current to drop down to zero with every change of the current flow.
- It has a single wave form.

Three-Phase Power

- Has three waves of power flowing at evenly spaced intervals from each other:
 - One wave is starting before the previous wave is depleted
 - The overall waveform never reaches zero
How Phases Affect Generator Output

• Single phase mode
 – the voltage always drops down to zero
 – 100% ripple

How Phases Affect Generator Output

• Three phase
 – Individual voltages drop to zero but there is always an overlap of wave pulses
 – When wave pulses are rectified, the average value never drops to zero
 • Makes x-ray production more efficient
 • Easier on the equipment

How Phases Affect Generator Output

• Three-phase, 6-pulse
 – produces a 13% voltage ripple
 – voltage supply to x-ray tube never falls below 87% of maximum value.

• Three-phase, 12-pulse
 – 4% voltage ripple is produced
 – value of the voltage never falls below 96% of maximum value.
How Phases Affect Generator Output

• There is also a high frequency generator that produces less than 1% voltage ripple. Value never falls below 99% of maximum value.
• Uses inverter circuits to convert DC to a series of square pulses and capacitor banks to smooth voltage.

This is what we have in our labs!

Capacitor Discharge Mobile Units

• A capacitor builds up a charge when the circuit is closed (when exposure button is pushed)
• When pre-selected charge is reached, the capacitor completes the circuit & sends the charge to the x-ray tube.
• Disadvantage - x-ray production falls off throughout exposure (end kV is approx. 1 kV per mAs lower than starting kVp)

Battery-Operated Mobile Units

• A nickel-cadmium battery supplies the necessary charge to produce quality x-rays
• Production is of higher quality
 – They obtain higher rms* voltage
 – No possibility of leakage
 – Combined with High Freq. Technology
 – Mobile was first to benefit from High Freq.

*rms (root mean square) – calculation that takes into account the constant fluctuation of the AC sine wave. See pg. 69 of Carlton.
Falling-Load Generators

- Used to provide the highest mA settings at the shortest time possible.
 - The operator selects mAs setting
 - The computer automatically calibrates the time of exposure (allowing consistently shorter exposures)
 - The mA is therefore controlled by the falling-load generator.
 - The mA starts at the highest possible setting and "falls" throughout the exposure.
 - This causes the kV to fluctuate slightly throughout exposure.
 - Can shorten tube life due to constant use of high mA

Automatic Exposure Control (AEC) Timers:

- Photomultiplier (old type)
 - Uses a fluorescent screen & converts the light produced by the screen to an electrical charge
 - When a pre-selected charge is reached, the photomultiplier terminates the exposure
 - Must be located behind the film!

- Ionization chamber
 - Uses radiolucent material located in front of the film
 - As x-rays pass through cell, they ionize the cell, when pre-set ionization level is reached signal is generated to terminate exposure.
 - Cells must be calibrated to a particular film/screen combination when installed
 - The body part in front of the cell determines how long it takes for the pre-set ionization level to be reached.
Problems with Minimum Reaction Time

- The time needed for the AEC & generator to terminate an exposure, also called response time
 - Short exposure times must be long enough to get a reading from the AEC & to the generator.
 - It is easy for the machine to overexpose the radiograph
 - Fast film & screen speeds also contribute to this problem.
 - This was a problem with older units and is less of a factor today

Backup Timers with AECs

- A safety device used to terminate the exposure if the AEC fails to do so
- As a rule, the backup timer cannot exceed the tube limit & it should be set at 150% of the expected manual exposure mAs

Manual Timers

- Synchronous timer – uses a synchronous motor that turns a shaft at 60 rps (times are a subdivision of this 1/60, 1/20, 1/30).
- Electronic timer – most sophisticated and most accurate, based on time required to charge a capacitor through a variable resistor. Accurate down to 1ms.
- mAs timer – used with falling load generators, monitors product of mA and time (tube current) and is the only timer located in the secondary circuit.
Tomography

• Purpose – to enhance the visualization of structures in a plane of interest by blurring adjacent structures.
• Principle – by moving the x-ray tube and film in opposite directions, a plane is visualized at the fulcrum (pivot point)
 – Structures beyond the fulcrum “travel” a greater distance across the film and are blurred.
 – Structures at the fulcrum “travel” a lesser distance across the film and remain relatively focused

Tomography

• Considerations
 – The wider the tomographic arc the thinner the cut. (30 – 40 degrees typical)
 – Must have an exposure time long enough to allow exposure throughout tube travel (low mA long exposure time. Example 20 mA @ 2 sec = 40 mAs)
 – Tomography has a high patient dose
 *Note: For nephrotomography measure patient in cm, divide answer by 3 and add 1 for first cut.
Tomography

• Motions:
 – Linear is still in use today, primarily for IVPs
 – Other motions were designed and used prior to CT and MRI to improve blurring and get better images. (see text for examples and descriptions of motions)